National Parks & Wildlife Service # Cloonshanville Bog SAC (site code 000614) ## Conservation objectives supporting document - raised bog habitats Version 1 January 2016 #### **Contents** | 1 | INTROL | DUCTION | ∠ | |---|------------------|--|-----| | | 1.1 RA | NISED BOGS | 2 | | | 1.1.1 | Raised Bogs Microtopography | 3 | | | 1.1.2 | Typical Flora of Irish Raised Bogs | | | | 1.1.3 | Typical Fauna of Irish Raised Bogs | | | | 1.2 H | ABITATS DIRECTIVE RAISED BOG HABITATS IN IRELAND | 9 | | | 1.2.1 | Restoration of Active Raised Bog in Ireland | 10 | | | 1.3 CL | OONSHANVILLE BOG SAC | 11 | | | 1.3.1 | Flora of Cloonshanville Bog | 11 | | | 1.3.2 | Fauna of Cloonshanville Bog | 12 | | 2 | CONSEI | RVATION OBJECTIVES | 13 | | | | REA | | | | 2.2 RA | NGE | 14 | | | 2.3 ST | RUCTURE AND FUNCTIONS | 14 | | | 2.3.1 | High bog area | 15 | | | 2.3.2 | Hydrological regime: water levels | 15 | | | 2.3.3 | Hydrological regime: flow patterns | 17 | | | 2.3.4 | Transitional areas between high bog and surrounding mineral soils (include | des | | | cutover | areas) | 17 | | | 2.3.5 | Vegetation quality: central ecotope, active flush, soaks, bog woodland | 18 | | | 2.3.6 | Vegetation quality: microtopographical features | 19 | | | 2.3.7 | Vegetation quality: bog moss (Sphagnum) species | 19 | | | 2.3.8 | Typical ARB species: flora | 20 | | | 2.3.9 | Typical ARB species: fauna | 20 | | | 2.3.10 | Elements of local distinctiveness | | | | 2.3.10 | | | | | 2.3.10
2.3.10 | | | | | 2.3.11 | Negative physical indicators | | | | 2.3.12 | Vegetation composition: native negative indicator species | | | | 2.3.13 | Vegetation composition: non-native invasive species | | | | 2.3.14 | Air quality: nitrogen deposition | | | | 2.3.15 | Water quality | | | _ | | • • | | | 3 | REFERE | NCES | 24 | - Map 1: Extent of potential active raised bog on Cloonshanville Bog. - Map 2: Distribution of raised bog ecotopes on Cloonshanville Bog. - Map 3: Digital elevation model and drainage patterns at Cloonshanville Bog. #### 1 Introduction This document presents a summary of the background information that has informed the process of setting the Site-Specific Conservation Objective in relation to the priority Annex I habitat 'active raised bog' (habitat code 7110) (hereafter referred to as Active Raised Bog (ARB)), for which Cloonshanville Bog Special Area of Conservation (SAC) has been designated. Cloonshanville Bog SAC is also designated for two other related Annex I habitats, namely; 'degraded raised bogs still capable of natural regeneration' (habitat code 7120) (hereafter referred to as Degraded Raised Bog (DRB)) and 'depressions on peat substrates of the Rhynchosporion' (habitat code 7150). Based on the close ecological relationship between these three habitats types, it is not necessary to set specific Conservation Objectives for all three habitats individually. It is considered that should favourable conservation condition for ARB be achieved on the site, then, as a consequence, favourable conservation condition for the other two habitats would also be achieved. Cloonshanville Bog SAC is also designated for the priority Annex I habitat 'bog woodland' (habitat code 91D0). A separate site-specific conservation objective has been set for bog woodland and therefore is not considered in this supporting document. #### 1.1 Raised Bogs Raised bogs are accumulations of deep peat (typically 3-12m) that originated in shallow lake basins or topographic depressions. The name is derived from the elevated surface, or dome, that develops as raised bogs grow upwards through the accumulation of peat; the domed effect is often exaggerated when the margins of a bog are damaged by turf cutting or drainage, and are drying out. Raised bogs are most abundant in the lowlands of central and mid-west Ireland. Irish raised bogs are classified into two sub-types (Schouten 1984): 1. Western or intermediate raised bogs, and 2. True midland or eastern raised bogs, based on phytosociological and morphological characteristics. In terms of overall morphology, the main difference between these two raised bog types is that while eastern raised bogs tended to stay more confined to the depressions in which they were formed, western raised bogs tended to grow out beyond their original basin, presumably a result of the higher rainfall levels (Cross 1990). In terms of vegetation differences the most obvious difference between the two bog types is the presence of a number of oceanic plant species on western raised bogs which are absent from the true midland raised bogs. The liverwort species *Pleurozia purpurea*¹ and the moss species *Campylopus atrovirens* grow on western raised bogs but not on eastern raised bogs; similarly, *Carex panicea* is generally more common on the high bog surfaces of western raised bogs (Schouten 1984). All of these plant species are widespread in the low-level Atlantic blanket bogs and their presence in western raised bogs is presumed to be due to the higher rainfall levels and greater rain-derived nutrient fluxes. Exploitation has been extensive and none of the remaining Irish raised bogs are completely intact (Cross 1990). It is estimated that less than 10% of the original raised bog habitat in Ireland is in a near intact state (uncut), with less than 0.5% continuing to support ARB (DAHG 2014). Excavated face banks, whether active or inactive, are a common feature around the margins. Any areas where part of the bog has been removed are termed cutover bog, with - ¹ Note on species nomenclature: In the case of plant species, only scientific names are used throughout the main text while common English names are included in tables. In the case of faunal species, common English names are used throughout the text (where known) together with scientific names. the remaining area referred to as high bog or intact bog. In a natural state, raised bogs are circled by a wetland fringe, known as the lagg zone, which is usually characterised by fen communities. In Ireland, most laggs have been lost through drainage and land reclamation (Fossitt 2000). The surface of a relatively intact raised bog is typically wet, acid, deficient in plant nutrients, and supports specialised plant communities that are low in overall diversity and comprising species adapted to the biologically harsh conditions. The vegetation is open, treeless and bog mosses or *Sphagnum* species dominate the ground layer. Small-scale mosaics of plant communities are characteristic and reflect the complex microtopography of hummocks and hollows on the bog surface (see Section 1.1.1 below). Raised bogs are driest at the margins and wetness generally increases towards the centre of the peat mass where well-developed pool systems are most likely to occur. Raised bogs may also contain soaks and flushes (wet 'active' or dry 'inactive') due to the increased supply of nutrients over time through concentrated surface flows, or where there are links with regional groundwater or the underlying mineral substratum. Slight mineral enrichment and / or constant through flow of water provide conditions suitable for a range of species that are not typically associated with other areas of raised bog. When damaged by peat extraction or drainage, the water table in the peat drops and the bog surface becomes relatively dry; pools are rare or absent, cover of bog mosses is greatly reduced and *Calluna vulgaris* increases in abundance. The drop in water table causes the peat to compress under its own weight causing the bog surface to deform. Greater deformation occurs closest to areas where the water table has dropped. This increases the slope of the bog surface causing rain falling on the ground surface to flow off the bog more quickly. The effect is normally greatest around the margins and in a typical situation surface wetness increases towards the centre of the bog. Trees such as *Betula pubescens* and *Pinus sylvestris* frequently invade the drier cut margins, but may also occur in flushed areas. In Ireland, the Annex I habitat ARB is currently considered to be in unfavourable bad conservation status principally as a result of marginal turf cutting, more recent semi-industrial peat extraction, and associated drainage effects caused by these activities (NPWS 2008; 2013). The lowering of regional groundwater levels are also known to have had an effect on some sites. Fires associated with turf cutting, dumping, or agricultural activities may also adversely affect the condition of the habitat. #### 1.1.1 Raised Bogs Microtopography Raised bogs are typically treeless and are characterised by a distinctive vegetation dominated by bog mosses (*Sphagnum*), sedges, and dwarf shrubs, all of which are adapted to waterlogged, acidic and exposed conditions. Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical surface features of hummocks, hollows, lawns, and pools. The wettest bogs, which have extensive pool systems, have the greatest variety of plant and animal life and support a range of specialist species. The following terms that describe microtopography are generally accepted in the study of mire ecology (Gore 1983). A schematic diagram showing the typical microtopographical divisions is presented in Figure 1. #### **Pools** Depressions in the bog surface where the water table remains above the surface level all year around or below surface level for only a very short period of time. They are characterised by the presence of aquatic plant species such as *Sphagnum cuspidatum*, *S.* denticulatum, and Cladopodiella fluitans. In more degraded scenarios or where high seasonal water fluctuation occurs, the pools contain open water and/or algae. Tear pools are found on bogs where internal tensions, due to mass movement of peat, has taken place within the high bog and has caused the
development of elongated pools. These are frequently found on western bogs and may be natural or anthropogenic in origin. #### **Hollows** These are shallow depressions (less than 5cm deep) on the bog surface where surface water collects, or where the water table reaches or lies just above ground level, depending on seasonal conditions. They are often filled with *Sphagnum* species such as *S. papillosum* and *S. cuspidatum*. They take many forms but are often eye shaped. Marginal hollows tend to be elongated as they are focused points for surface water run-off. They are often dominated by *Narthecium ossifragum*. #### Lawns These are shallow hollows or flat areas where one species dominates to form a lawn. This is frequently a *Sphagnum* species, such as *Sphagnum* magellanicum, or *S. papillosum* which can completely fill in a hollow to form a small lawn. #### **Flats** These are more or less flat areas which are intermediate between hollow and hummock communities. They tend to be drier than the above situations. #### **Hummocks** These are mounds on the bog surface which can range from a few centimetres to more than one metre in height. They are usually composed mainly of *Sphagnum* species, such as *Sphagnum magellanicum*, *S. capillifolium*, *S. austinii* and *S. fuscum* but other bryophyte species such as *Hypnum jutlandicum* and *Leucobryum glaucum* are also important, especially as the hummock grows taller and becomes drier. *Calluna vulgaris* is another important element, as it flourishes where the water table is not at surface level (Kelly & Schouten 2002). **Figure 1** Raised bog microtopographical divisions on the high bog surface (reproduced from Kelly & Schouten 2002). #### 1.1.2 Typical Flora of Irish Raised Bogs Raised bogs are characterised by a distinctive vegetation dominated by a variety of mosses (e.g. Sphagnum spp., Hypnum spp., Racomitrium spp.), sedges and grass-like species (e.g. Eriophorum spp., Rhynchospora spp., Narthecium ossifragum, Molinia caerulea and Carex spp.), and dwarf shrubs (e.g. Calluna vulgaris, Erica tetralix, Vaccinium spp. and Empetrum nigrum). In addition to these groups, a number of other species characterise raised bogs including carnivorous plants (e.g. Drosera spp., Utricularia spp.), lichens of both the bog surface and epiphytes on the stems of dwarf shrubs and the occasional trees on bogs (e.g. Cladonia spp., Usnea spp.). Herbaceous plants are not a significant element on raised bogs and include a few commonly occurring species such as Menyanthes trifoliata, Pedicularis sylvatica, and Potentilla erecta (Cross 1990). Drier areas and hummocks usually support *Calluna vulgaris, Eriophorum vaginatum, Trichophorum germanicum, Erica tetralix,* lichens (*Cladonia* spp.), bog mosses (*Sphagnum capillifolium, S. austinii, S. fuscum, S. papillosum*) and other mosses (*Dicranum scoparium, Leucobryum glaucum*). Wet hollow areas and pools are characterised by *Eriophorum angustifolium, Rhynchospora alba, Narthecium ossifragum, Drosera* spp., *Menyanthes trifoliata,* bladderworts (*Utricularia* spp.) and bog mosses (*Sphagnum cuspidatum, S. denticulatum and S. magellanicum*). A list of flora species that are regarded as being typical of ARB habitat in Ireland is presented in Table 1. A number of these typical species would have a restricted distribution and do not occur throughout the range of the habitat in Ireland (see above), therefore only a subset of these species would be expected to be present on any individual bog. **Table 1** Flora species typically associated with active raised bog in Ireland (after NPWS 2013). Species list is based on vegetation communities defined by Kelly (1993) and Kelly & Schouten (2002). | Common name | Scientific Name | |-----------------------------|--------------------------| | Bog rosemary | Andromeda polifolia | | Bog bead moss | Aulacomnium palustre | | Bristly Swan-neck moss* | Campylopus atrovirens* | | Lichen | Cladonia ciliata | | Lichen | Cladonia portentosa | | Long leaved sundew | Drosera anglica | | Intermediate leaved sundew* | Drosera intermedia* | | Round leaved sundew | Drosera rotundifolia | | Common cotton grass | Eriophorum angustifolium | | Hare's tail cotton grass | Eriophorum vaginatum | | Large white moss | Leucobryum glaucum | | Bogbean | Menyanthes trifoliata | | Bog asphodel | Narthecium ossifragum | | Purple spoonwort* | Pleurozia purpurea* | | Woolly fringe moss* | Racomitrium lanuginosum* | | White beak-sedge | Rhynchospora alba | | Austin's bog moss | Sphagnum austinii | | Red bog moss | Sphagnum capillifolium | | Feathery bog moss | Sphagnum cuspidatum | | Cow-horn bog moss* | Sphagnum denticulatum* | | Rusty bog moss | Sphagnum fuscum | | Magellanic bog moss | Sphagnum magellanicum | | Papillose bog moss | Sphagnum papillosum | | Golden bog moss* | Sphagnum pulchrum* | | Lustrous bog moss | Sphagnum subnitens | | Bladderwort | Utricularia minor | | Cranberry | Vaccinium oxycoccos | Notes: * Species more typical of western raised bog sites. #### 1.1.3 Typical Fauna of Irish Raised Bogs Raised bogs are extremely nutrient poor ecosystems. Acidic, waterlogged and exposed conditions make them an unattractive habitat for animal life. As a consequence they are relatively poor both in terms of species diversity and population densities. Many species are opportunists, vagrant or temporary rather than specialists, but nonetheless may have an important impact on the ecosystem through nutrient imports and exports or other interactions (Cross 1990). A list of fauna species that would be typically associated with raised bog habitat in Ireland is presented in Table 2. The species listed are not confined to ARB and most, if not all, will use other areas of the bog and surrounding habitats. Raised bog is unsuitable habitat for many vertebrates due to the lack of available foraging and suitable breeding places. The Irish hare is the only mammal commonly occurring. The common frog is the most common vertebrate predator. Although 18 species of birds have been reported breeding on raised bogs (Wilson 1990) many of these species utilise the bog as a nesting habitat only. They are dependent on other neighbouring habitats such as open water bodies, callows and wet grassland particularly for feeding. Just a few species of bird, including meadow pipit (*Anthus pratensis*), skylark (Alauda arvensis) and curlew (Numenius arquata) complete their full breeding cycle on the bog and the first two species are the commonest species occurring (Bracken et al. 2008). Red grouse (Lagopus lagopus) must also be included as a typical bog species, occurring year round as a resident. Red grouse and curlew have declined significantly on raised bogs in recent times. BirdWatch Ireland have published an Action Plan for Raised Bog Birds in Ireland which lists 13 species of conservation concern that are associated with Raised Bogs (O'Connell 2011). A recent review of birds of conservation concern in Ireland has since added meadow pipit (Anthus pratensis) to the red (most endangered) list of Birds of Conservation Concern in Ireland (BoCCI) (Colhoun & Cummins 2013). Our knowledge of the invertebrate assemblages associated with Irish raised bogs remains incomplete (particularly micro-invertebrate species) with few studies undertaken (Reynolds 1984a; Reynolds 1984b; Reynolds 1985; De Leeuw 1986; O Connor *et al.* 2001; Crushell *et al.* 2008; Hannigan & Kelly-Quinn 2011; Wisdom & Bolger 2011, Nolan 2013). Van Duinen (2013) highlights the importance of structural diversity at various spatial scales (e.g. microscale of hummock hollow topography to macro-scale which would include the landscape setting of the bog, see Schouten (2002)) as a prerequisite for hosting the full species diversity of raised bog landscapes. A recent study of Lepidoptera associated with raised bogs identified two species that appear to be characteristic of higher quality raised bog habitat, namely bordered grey (*Selidosema brunnearia* (Villers, 1789)) and light knot grass (*Acronicta menyanthidis* (Esper, 1789)) (Flynn 2014). Recent research on spiders has revealed that a number of species are known to occur in Ireland only on raised bog habitats, all of which are considered local/uncommon or rare across Europe (Myles Nolan pers. comm.). Five of these species that can be considered useful indicators of ARB include: *Glyphesis cottonae* (La Touche 1945), *Walckenaeria alticeps* (Denis 1952), *Satilatlas britteni* (Jackson 1913), *Pirata piscatorius* (Clerck 1757), and *Minicia marginella* (Wider 1834) (Myles Nolan pers. comm.). The information currently available on other invertebrate groups of peatland systems in Ireland is not sufficient to allow a determination of many species that are typically associated with or may be characteristic of higher quality ARB. A selection of invertebrate species and species groups that are known to be typically associated with raised bogs are presented in Table 2. **Table 2** Fauna species typically associated with raised bog ecosystems in Ireland (after O'Connell 1987; Cross 1990; Renou-Wilson *et al.* 2011; Bracken & Smiddy 2012). | Common name | Scientific name | |-------------------------------------|--| | Mammal species | | | Irish hare | Lepus timidus hibernicus | | Otter | Lutra lutra | | Pygmy shrew | Sorex minutes | | Fox | Vulpes vulpes | | Bird species | . , , , , , , , , , , , , , , , , , , , | | Skylark | Alauda arvensis | | Mallard | Anas platyrhynchos | | Greenland white-fronted goose | Anser albifrons flavirostris | | Meadow pipit | Anthus pratensis | | Hen harrier | Circus cyaneus | | Cuckoo | Cuculus canorus | | Merlin | Falco columbarius | | Kestrel | Falco tinnunculus | | Snipe | Gallinago gallinago | | Red grouse | Lagopus lagopus | | Curlew | Numenius arquata | | Golden plover | Pluvialis apricaria | | Lapwing | Vanellus vanellus | | Reptiles and amphibians | | | Common lizard | Lacerta
vivipara | | Common frog | Rana temporaria | | Typical invertebrates | | | Black slug | Arion ater | | Large heath butterfly | Coenonympha tullia | | Marsh fritillary butterfly | Euphydryas aurinia | | Bog-pool spider | Dolomedes fimbriatus | | Water striders | Gerris and Velia species | | Oak eggar moth | Lasiocampa quercus | | Four-spotted chaser dragonfly | Libellua quadrimaculata | | Fox moth | Macrothylacia rubi | | Ant | Myrmica ruginodis | | Emperor moth | Saturnia pavonia | | Great green bog grasshopper | Stethophyma grossa | | Other species groups that are well | Araneae (spiders and mites) | | represented on raised bogs include: | Ceratopogonidae (biting-midges) | | | Chironomids (non-biting midges) | | | Coleoptera (beetles) | | | Collembola (springtails) | | | Diptera (true flies) | | | Dytiscidae (water beetles) | | | Hemiptera (true bugs) | | | Hymenoptera (bees, wasps, ants and sawflies) | | | Lepidoptera (butterflies and moths) | | | Odonta (dragonflies and damselflies) | | | Orthoptera (grasshoppers) | | | Syrphidae (hoverflies) | | | Tipulidae (craneflies) | | | Tabanidae (horseflies) | | | rapariidae (11013e111e3) | #### 1.2 Habitats Directive Raised Bog Habitats in Ireland Four habitat types listed on Annex I of the EU Habitats Directive are typically associated with raised bogs in Ireland, two of which are priority habitats (*): - 7110 Active raised bogs (ARB)* - 7120 Degraded raised bogs still capable of natural regeneration (DRB) - 7150 Depressions on peat substrates of the Rhynchosporion - 91D0 Bog woodland* The interpretation manual of EU habitats gives the following description for 'active raised bogs': "Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (Erico-Sphagnetalia magellanici, Scheuchzerietalia palustris p., Utricularietalia intermediominoris p., Caricetalia fuscae p.). The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included." (CEC 2007). DRB should be, according to the interpretation manual capable of regeneration to 'Active Raised Bog' in 30 years if appropriate measures are put in place (i.e. no major impacting activities are present and any necessary restoration works are implemented). In Ireland, the identification of ARB is made at ecotope level based on the vegetation classification developed by Kelly (1993) and Kelly & Schouten (2002). Raised bog vegetation communities are grouped into a series of community complexes and these complexes are then amalgamated into a series of ecotopes characterised by different physical characteristics using the approach outlined by Kelly & Schouten (2002). The main ecotopes that community complexes are grouped into include: - Central ecotope - Sub-central ecotope - · Active flushes and soaks - Sub-marginal ecotope - Marginal ecotope - Inactive flushes - Face-bank ecotope Actively accumulating peat conditions occur within the sub-central and central ecotopes, which are the wettest on the bog and an indication of good quality ARB. Active flushes and soaks are also dominated by *Sphagnum* mosses and typically have wet conditions. These features are associated with ARB and contribute to the overall diversity of the habitat. The adjacent surrounding marginal, sub-marginal, and face-bank bog areas typically have a supporting function for the central and sub-central communities but are not peat accumulating. These drier ecotopes may or may not correspond to the Annex I habitat DRB, as it depends on whether they are capable of regeneration to ARB. Other drier ecotopes recorded on the high bog that do not correspond to ARB include 'inactive flushes' which typically have a low *Sphagnum* cover. The Annex I habitat Rhynchosporion depressions (7150) typically occurs along pool edges and on flats underlain by deep, wet and quaking peat. Typical plant species include Rhynchospora alba, Drosera anglica, Narthecium ossifragum, Sphagnum cuspidatum, S. denticulatum, S. magellanicum, S. papillosum, Menyanthes trifoliata, and Eriophorum angustifolium. The priority Annex I habitat bog woodland is also actively peat-forming and overlaps with the ARB habitat. Such woodlands are usually dominated by *Betula pubescens* with a characteristic ground cover dominated by *Sphagnum* moss species, which often form deep carpets, and other mosses including species of *Polytrichum*. Dry woodland areas occasionally found on raised bogs have an absence of the characteristic moss layer do not correspond to the Annex I habitat and are not regarded as peat forming. A separate conservation objective has been prepared for bog woodland. Woodland areas are occasionally found on raised bogs that have an absence of the characteristic moss layer and are not regarded as peat forming. Such areas do not correspond to the Annex I habitat. #### 1.2.1 Restoration of Active Raised Bog in Ireland As already mentioned in the section 1.1, ARB is currently considered to be in unfavourable bad conservation status in Ireland. In addition, according to its definition, DRB should be capable of regeneration to ARB in a 30-year timescale. Thus, it follows that restoration measures are required in order to halt further losses and increase the area of ARB as well as to improve the condition of existing areas of the Annex I habitat. Most of the restoration works undertaken so far in Ireland have concentrated on the high bog (e.g. Clara Bog, Mongan Bog, Sharavogue Bog and Raheenmore Bog) to prevent further losses as well as to restore areas to ARB. Nevertheless, some restoration works have also been undertaken on cutover areas such as at Ballykenny and Fisherstown Bogs and Killyconny Bog. Such work aims to do one or more of the following (depending on the bog in question): restore ARB on the high bog; reduce further ARB and DRB loss on the high bog; restore peat forming habitats (such as ARB, bog woodland, poor fen) on the cutover. Works undertaken by the NPWS have indicated that there are significant differences, both ecological and economic, when comparing the effectiveness of works carried out on the cutover with those carried out on the high bog. Positive and significant results (i.e. expansion or development of ARB) can be achieved over a relatively short timeframe (10 years) on favourable areas of the high bog by blocking high bog drains. In contrast, a longer time period (30 years+) is required to achieve active peat formation on cutover areas, and even then the results are generally confined to smaller areas; i.e. flat areas (≤0.3% surface slope) or enclosed depressions that have sufficient water flow (minimum catchment 0.5ha) to maintain wet conditions throughout the year. A longer time period (minimum 50-100 years) is likely to be required for high quality ARB habitat (vegetation structure and species diversity) to develop on such cutover areas. In addition, costs of restoration measures on cutover areas are typically significantly higher than those on high bog areas. #### 1.3 Cloonshanville Bog SAC The SAC includes the raised bog, known as Cloonshanville Bog and surrounding areas which include cutover bog and a small area of improved grassland. The Breedoge River, which marks the eastern boundary of the SAC, adds habitat diversity. The site has been selected for four Annex I habitats as follows: - [7110] Active raised bogs* - [7120] Degraded raised bogs still capable of natural regeneration - [7150] Depressions on peat substrates of the Rhynchosporion - [91D0] Bog woodland* Cloonshanville Bog is located approximately 2km east of Frenchpark in Co. Roscommon. The eastern boundary of the SAC is the Breedoge River, while the southern is the Frenchpark/Elphin road. The bog developed in a shallow basin in a groundwater discharge zone and is underlain by low-permeability, clayey limestones. The regional water table has been lowered, but evidence of groundwater inputs are seen on and around the high bog. Cloonshanville has been classified as a western raised bog (Cross, 1990) and geomorphologically as a ridge river bog (Kelly *et al.* 1995). The high bog is broadly rectangular in shape with a small extra lobe in the south-east, separated from the main lobe of the bog by a drain and a track. To the east, the bog retains its original boundary, the River Breedoge. An area of calcareous fen, which occupies the site of a former lake, adds to the overall ecological interest of the SAC as such fen areas are rarely encountered in association with raised bog systems. A large flush area occurs in the centre of the bog dome. The main body of the flush supports an extensive area of *Betula* dominated bog woodland, a priority Annex I habitat in its own right. The woodland is well-developed structurally and contains a diverse range of plant species. Much of the uncut high bog has been impacted by drainage associated with past peat cutting around the edges and afforestation on the high bog. As part of a Coillte EU LIFE restoration project, the forestry on the high bog has been removed and drains blocked (Derwin 2008). Positive results of these management measures are reported by Fernandez et al. 2014a, b. #### 1.3.1 Flora of Cloonshanville Bog The best quality ARB at Cloonshanville Bog includes central ecotope (Fernandez et al. 2014a, b) which is recorded at one location on the high bog. This area features interconnecting pools comprising 34-50% cover with total *Sphagnum* cover ranging from 51-75%. *Sphagnum cuspidatum* dominates the pools, with *Sphagnum denticulatum* rarely present. *Sphagnum papillosum* and *Sphagnum pulchrum* lawns fringe the pools, above which rise low
hummocks of *Sphagnum capillifolium* and *Sphagnum austinii*. The oceanic species *Pleurozia purpurea* and *Racomitrium lanuginosum* are present. *Calluna vulgaris* and *Eriophorum vaginatum* are the most abundant vascular plant species (Fernandez et al. 2014a, b). Sub-central ecotope vegetation is found at 13 locations across the bog (Fernandez et al. 2014a, b). Some of these areas are characterised by 34-50% cover of regular pools dominated by Sphagnum cuspidatum with some Eriophorum angustifolium interspersed with hummocks of Sphagnum capillifolium occupied by Calluna vulgaris and Eriophorum vaginatum. Some areas feature a poorer-quality variant with higher cover of Narthecium ossifragum. Other sub-central ecotope areas featured small and infrequent pools but with Sphagnum cover reaching 51-75%. Hummocks of Calluna vulgaris, Sphagnum austinii, Sphagnum fuscum, Sphagnum capillifolium and Hylocomium splendens are interspersed with lawns of Sphagnum pulchrum and Sphagnum papillosum. Near one of the flushes, western bog and flush species, such as Schoenus nigricans and Molinia caerulea are present. Another complex is characterised by low hummocks of Sphagnum capillifolium, and more rarely Sphagnum austinii and Sphagnum fuscum, interspersed with Sphagnum cuspidatum in hollows and occasional small pools. Lawns of Sphagnum papillosum are frequent and the oceanic species Pleurozia purpurea and Racomitrium lanuginosum are occasional. Narthecium ossifragum and Calluna vulgaris are the most abundant vascular plants. In these areas, water flows to the west towards a double drain and track. Two newly regenerating areas adjacent to clearfelled plantations are characterised by vigorous new growth of Sphagnum but pools are rare. The main Sphagnum species are Sphagnum capillifolium, Sphagnum papillosum and Sphagnum magellanicum with Sphagnum pulchrum also featuring in some parts. Otherwise Calluna vulgaris, Eriophorum vaginatum and Eriophorum angustifolium are the most characteristic species (Fernandez et al. 2014a, b). Cloonshanville Bog features two areas of bog woodland that cover a total of 2.17 ha, which are associated with the central flush. The smaller, more northern section, is lower in height, but both woodlands are very wet, with high cover of *Sphagnum*, including *S. fimbriatum* and *S. squarrosum* (Fernandez *et al.* 2014a, b). A large central flush with several arms bisects the site. The section north of the main area of bog woodland is active and is characterised by abundant *Molinia caerulea* with hummocks of *Sphagnum capillifolium* interspersed with *Sphagnum fallax*. Scattered *Betula pubescens* saplings are present with overall cover of 4-10%. A quaking mat of *Sphagnum palustre* that grades into a *Sphagnum cuspidatum* pool was noted west of the bog woodland. The 'arms' of the flush are also active and these included a flush type dominated by *Sphagnum* with *Sphagnum fallax* and *Sphagnum palustre* under tall, abundant *Calluna vulgaris* and *Myrica gale*. This graded into a *Molina caerulea* dominated community with *Menyanthes trifoliata*, *Comarum palustre*, *Succisa pratensis* and *Myrica gale* on quaking peat (Fernandez *et al.* 2014a, b). Non-active raised bog habitat on Cloonshanville Bog includes the sub-marginal and marginal ecotopes, as well as inactive flushes. Although some areas of have a relatively well-developed raised bog flora, they are affected by water loss to varying degrees, and are usually devoid of permanent pools (Fernandez *et al.* 2014a, b). #### 1.3.2 Fauna of Cloonshanville Bog No faunal observations have been reported from Cloonshanville Bog, although it is likely that the bog supports a range of species listed in Section 1.1.3 above. #### 2 Conservation objectives A site-specific conservation objective aims to define the favourable conservation condition of a habitat or species at site level. The maintenance of habitats and species within sites at favourable condition will contribute to the maintenance of favourable conservation status of those habitats and species at a national level. Conservation objectives for habitats are defined using attributes and targets that are based on parameters as set out in the Habitats Directive for defining favourable status, namely area, range, and structure and functions. Attributes and targets may change or become more refined as further information becomes available. National Conservation Objectives for raised bog SACs have recently been published in the Draft National Raised Bog SAC Management Plan (DAHG 2014). The various attributes and the justification of appropriate targets used to define favourable conservation condition for ARB relevant to Cloonshanville Bog SAC are discussed in the following sections. #### 2.1 Area NPWS has commissioned a number of raised bog surveys between 1993 and the present-Kelly et al. (1995); Derwin & MacGowan (2000); Fernandez et al. (2005); Fernandez et al. (2006); Fernandez et al. (2014a, b). Mapping from these surveys has been used to derive the area of ARB for each bog as shown in Table 3. More recent surveys have been able to employ more precise and detailed mapping techniques and more standardised ecotope descriptions. NPWS undertook a review of data from earlier surveys in 2014 taking into account these improved techniques with the aim of providing more accurate figures for ARB. This in some cases has resulted in a change in ARB area for these earlier time periods (NPWS, unpublished data). The national SAC target for the attribute 'habitat area' has been set at 2,590ha (DAHG 2014). This target is based on the estimated area of ARB (1,940ha) and DRB (650ha) present within the SAC network in 1994 (when the Habitats Directive came into effect). The area of ARB at Cloonshanville Bog in 1994 is estimated to have been 28.3ha, while the area of DRB is estimated to have been 14.7ha at that time (see Table 3). Using the same approach that has been adopted in setting the national SAC target, the site-specific target for Cloonshanville Bog would equate to 43.0ha (sum of ARB and DRB in 1994). However, in setting the site-specific target the current hydro-ecological conditions on the bog (including cutover) have been considered in order to ensure that the target being set is based on a realistic appraisal of what is achievable as set out below. The most recent monitoring survey of the bog estimated the area of ARB to be 20.1ha (Fernandez *et al.* 2014a, b). This represents a decrease of 8.2ha (28.9%) during the period 1994-2012. An additional survey undertaken in 2004 confirms that this decrease occurred during the period 1994-2004 (Fernandez *et al.* 2005). The current extent of DRB as estimated using a recently developed hydrological modelling technique, based largely on Light Detection and Ranging (LiDAR)² data is 45.2ha (see DAHG 2014 for further details of the technique). This represents the area of the high bog, which does not currently contain ARB but has topographical conditions deemed suitable to support ARB (see Map 1 which shows the total area of current and modelled potential ARB). This area was further refined to 22.6ha by estimating the area that could be restored by blocking ² LiDAR is a remote sensing technology that measures vertical surface elevation by illuminating a target with a laser and analysing the reflected light. This provides much more detailed topographical maps than can be collected by traditional surveying techniques. drains on the high bog. This refinement was based on applying an efficacy factor (see DAHG 2014). Based on the current assessment of the bog, it is therefore concluded that the maximum achievable target for ARB on the high bog is 42.7ha, which is just 0.3ha less than the estimated area at time of designation. However, it is important to note that this assumes no further decline of ARB due to impacting activities. Similarly, should the bog be significantly dependent on regional groundwater levels then any deepening of drains in the cutover could further impact the potential restoration of ARB on the high bog. **Table 3** Area of ARB and DRB recorded on the high bog at Cloonshanville Bog in 1994, 2004, and 2012 (Source: Kelly *et al.* 1995; Fernandez *et al.* 2014a, b). | 1994 | | 2004 | | 2012 | | |----------|----------|----------|----------|----------|----------| | ARB (ha) | DRB (ha) | ARB (ha) | DRB (ha) | ARB (ha) | DRB (ha) | | 28.3 | 14.7 | 20.2 | Unknown | 20.1 | 22.6 | A recent eco-hydrological assessment of the cutover surrounding the high bog undertaken as part of the restoration planning process estimates that, by implementing appropriate management, an additional 1.3ha of ARB could be restored in this area. The long term achievable target for ARB on Cloonshanville Bog is therefore set at 44.0ha. In conclusion, the site-specific target for the attribute habitat area is: **Restore area of active** raised bog to 44.0ha, subject to natural processes. #### 2.2 Range At a national scale, range represents the geographic range that encompasses all significant ecological variations of the ARB habitat. The national SAC target for the attribute 'range' has been set as 'not less than current range subject to natural processes'. However, range, in the form of habitat distribution, may also be important at the site level, particularly within larger SACs, including those containing a number of individual bogs (i.e. complexes). The attribute therefore under the parameter of range is 'habitat distribution'. At the local level, it is important to conserve the variability and distribution of ARB across a raised bog SAC. This will help to ensure the diversity of the habitat is maintained while lessening the impact of localised damaging activities such as fire. The conservation of ARB within Cloonshanville Bog as set out in Section 2.1 above will contribute to safeguarding the national range of the habitat. The ARB habitat at Cloonshanville Bog includes central and
sub-central ecotope, as well as active flush systems, including areas of bog woodland. A map showing the most recent distribution of ecotopes throughout Cloonshanville Bog is presented in Map 2. The site-specific target for the attribute habitat distribution is: **Restore the distribution and variability of active raised bog across the SAC.** #### 2.3 Structure and functions Structure and functions relates to the physical components of a habitat ("structure") and the ecological processes that drive it ("functions"). For ARB these include attributes such as the hydrological regime, water quality, habitat quality, species occurrence, elements of local distinctiveness, marginal habitats, negative physical indicators, and negative species occurrence. As several of these attributes are inter-connected, they are all included in order to better define habitat quality in a meaningful way. In some cases, attribute targets are not quantified; however, as more detailed information becomes available (for example through further research), more measurable site-specific targets may be developed. Structure and functions attributes are expanded on in the sections below. #### 2.3.1 High bog area On individual raised bogs adequate high bog is required to support the development and maintenance of ARB. Raised bog habitat that is classified as neither ARB nor DRB is still important particularly as a supporting habitat for those listed in Annex I of the Habitats Directive. It is an essential part of the hydrological unit which supports the ARB and DRB habitats. High bog is of value in its own right as a refuge for species characteristic of drier bog conditions as well as for providing a transitional zone between the Annex I habitats of the high bog and surrounding areas. Additional values for the maintenance of high bog include the preservation of its record of past environmental conditions and carbon storage. The area of high bog in the entire SAC network in 1994 was 10,740ha. The corresponding area in 2012 is 10,515ha – indicating that there has been a 225ha loss of high bog since 1994. The national target for the attribute 'high bog' habitat is to ensure no decline in extent of high bog to support the development and maintenance of ARB. The area of high bog within Cloonshanville Bog SAC in 1994 was mapped as 146.5ha, while the corresponding area in 2012 is 146.4ha (based on interpretation of LiDAR and aerial photography flown in 2012), representing a loss of 0.1ha of high bog (DAHG 2014). The extent of high bog within the SAC in 2012 is illustrated on Map 1. The site-specific target for the attribute high bog is: **No decline in extent of high bog** necessary to support the development and maintenance of active raised bog. #### 2.3.2 Hydrological regime: water levels Hydrological processes are key drivers of raised bog ecology. The different raised bog communities, assemblages and species are affected by various hydrological attributes. For ARB, mean water levels need to be near or above the surface of bog lawns for most of the year. Seasonal fluctuations should not exceed 20cm, and water level should be within 10cm of the surface, except for very short periods of time (Kelly & Schouten 2002). Gentle slopes that limit intermittent lateral losses of water (through surface run-off) and encourage sustained waterlogging are the most favourable to achieve these conditions. Such conditions may be maintained on steeper slopes in areas of focused flow (flushes). The traditional view of water flowing across the bog laterally has been recently refined to also consider that water flows vertically through peat into the underlying substrate. Water loss, by this route, depends on the permeability of the material through which the water must flow and the difference in head (water level elevation) in the bog and underlying mineral substrate; larger differences encountered in higher permeability materials will result in greater losses. Although the proportion of water lost in this manner may be small, the sustained loss during prolonged dry periods may be sufficient to impact bog ecotopes. Drains extending into the mineral substrate in marginal areas surrounding the bog can lead to an increased gradient between the head in the peat and the head in the underlying substrate resulting in increased vertical water losses from the bog. The most recent description of drainage at Cloonshanville Bog is presented in Fernandez et al. (2014b), who reported 4.4km of unblocked drains are impacting upon the raised bog habitats. The majority of the drainage is classified as reduced functional (2.9km), with the remaining drains classified as functional (1.5km). In addition 2.1km of unblocked drains were reported to be in-filled with vegetation; it is not known whether these drains are having any impact upon high bog habitats. Many of the high bog drains are associated with a conifer forestry plantation towards the north of the site, as well as a smaller plantation to the south of the SAC. Both plantations were felled by Coillte between 2005 and 2007 as part of a raised bog restoration project and the majority of the drains except for boundary drains were blocked. The cutover areas were not surveyed by Fernandez *et al.* (2014b) during the 2012 survey. However, it is evident from aerial photography that there are drains around most of the bog. Many of these drains are associated with reclamation of cutover for agricultural purposes, although there are also drains associated with past peat-cutting activities. The Breedoge River flows along the eastern boundary of the bog and Kelly *et al.* (1995) noted that there had been a lowering of the regional groundwater table due to extensive drainage works in the area around Lough Gara and dredging of the Breedoge River. It is unknown whether maintenance (i.e. drain clearance or additional dredging) of these drainage works has been carried out recently. Fernandez *et al.* (2014b) indicate that lowering of the water table and marginal drainage may have been responsible for losses of ARB. Much of the knowledge regarding the hydrological requirements of raised bog communities in Ireland stems from the extensive ecological and hydrological work undertaken on Clara Bog since the early 1990s. The only available hydrological study for Cloonshanville Bog is the work carried out by Kelly *et al.* (1995). The hydrochemistry survey identified electrical conductivity (EC) values in the drains on the southern cutover to range between 85 - 125 μ S/cm, indicating very little influence from minerotrophic groundwater (as bog water typically has an EC value of < 100 μ S/cm reflecting the largely inert nature of the peat). An EC value of 260 μ S/cm was reported in the deep drain in the south-west, indicating groundwater upwelling. This was confirmed, with the 3m deep cutover drains along the west boundary of the high bog having readings of 400 μ S/cm and 744 μ S/cm. The drains and pools of water at facebanks within the northern cutover had EC values of between 80 - 122 μ S/cm, suggesting little groundwater influence in this area. To the north-east of the bog, a marginal drain collecting flow from the high bog had an EC value of 164 μ S/cm, indicating some groundwater influence in this area. Upwelling groundwater suggests that drains may intercept the regional groundwater table. This can result in a decline in groundwater head, which can impact on the surface of the bog through subsidence. The risk of subsidence depends on the permeability of the underlying substrate, which will influence the extents of impacts from changes to groundwater head. Geological maps show that Cloonshanville Bog is predominantly underlain by a Visean limestone bedrock unit; this is a regionally important aquifer, as it is subject to karstification (conduit). The south-eastern section of the bog is underlain by a sandstone, siltstone and black mudstone bedrock unit; this is a locally important aquifer that is moderately productive only in local zones. Subsoil mapping indicates that the main mineral subsoil in the surrounding area is sandstone till, which is likely to extend under the peat. The presence of a productive bedrock unit as well as potentially permeable substrate suggests that a decline in groundwater head may contribute to subsidence on the high bog. Further deepening of marginal drains or dredging of the Breedoge River has the potential to have significant impacts on Cloonshanville Bog SAC. The site-specific target for the attribute hydrological regime – water levels is: **Restore** appropriate water levels throughout the site. #### 2.3.3 Hydrological regime: flow patterns As outlined above, ARB depends on water levels being near or above the surface of bog lawns for most of the year. Long and gentle slopes are the most favourable to achieve these conditions. Changes to flow directions due to subsidence of bogs can radically change water regimes and cause drying out of high quality ARB areas and soak systems. A map illustrating the slopes and drainage patterns on Cloonshanville Bog based on a digital elevation model generated from LiDAR imagery flown in 2012 is presented in Map 3. The slopes and flow patterns on Cloonshanville Bog indicate that the bog may have been affected by subsidence in the past. There is a large internal depression resulting in significant flow towards the south-eastern margin of the bog, coinciding with the area of bog woodland and the flush features on the bog. Based on aerial photography and surveys carried out by Kelly *et al.* (1995), it is likely that this feature has been present for some time. There are also examples of smaller areas of focused flow, towards high bog drains, indicating the impact these drains have had on the surface topography. Further changes to flow patterns or slopes arising from subsidence due to the effects of peat exploitation and drainage are likely to have a significant
impact on raised bog habitats. The site-specific target for the attribute hydrological regime – flow patterns is: **Restore**, where possible, appropriate high bog topography, flow directions and slopes. ### 2.3.4 Transitional areas between high bog and surrounding mineral soils (includes cutover areas) Transitional zones between raised bogs and surrounding mineral soils are typically cutover bog and drained lagg zones. The maintenance / restoration of these areas will help to maintain hydrological integrity of ARB and DRB, and support a diversity of other wetland habitats (e.g. wet woodland, swamp and fen) as well as species that they sustain. In some cases, these areas may assist in reducing further losses of ARB / DRB on the high bog and in time could develop into active peat forming habitats (including ARB - see Section 2.1 above). These transitional zones, once restored, can provide ecosystem services through flood attenuation and water purification to downstream areas and potentially increase the carbon storage / sink function of the bog. The estimated extent of such transitional areas within the SAC network is 3,000ha (DAHG 2014). The national target for these transitional areas is to maintain / restore semi-natural habitats with high water levels around as much of the bog margins as necessary. The transitional areas at Cloonshanville Bog include a range of different habitat types (e.g. improved grassland, cutover bog, scrub and fen). The total area of cutover bog within the Cloonshanville Bog SAC is estimated to be circa 77ha. The development of habitats within cutover areas depends on a number of factors including prevailing land-use, topography, upwelling regional groundwater, and drainage. Fernandez *et al.* (2014a, b) recorded that Cloonshanville Bog still largely retains its original boundary on the east, the River Breedoge. An area of degraded calcareous fen that occupies the site of a former lake adds to the overall ecological interest of the site as such fen areas are rarely encountered in association with raised bog systems (Kelly *et al.* 1995; Conaghan & Heery 2003). This fen was partially planted with *Pinus contorta*, which has been since felled to waste by Coillte as part of a LIFE raised bog restoration project (Derwin 2008). Kelly et al. (1995) recorded that much of the bog is surrounded by areas of old cutover bog. To a large extent the cutover to the south-west and west are dominated by *Juncus spp.* though there are areas of regenerating peat which are quite close to the bog and areas where more mesotrophic species such as *Agrostis* spp., *Angelica sylvestris*, *Filipendula ulmaria*, *Ranunculus acris* and *Ranunculus repens* are growing. Deep drains (up to 1.5m) were excavated in 1994, possibly with the intention of field drainage. In this area there are also some small *Betula pubescens* clumps in old drains close to the bog. Further north along the west of the site Betula pubescens, Pinus contorta and Phragmites australis are seen in areas of old cutover with Juncus effusus and Molinia caerulea dominating in the more open areas. In the north-west corner abundant Calluna vulgaris, Typha latifolia, Angelica sylvestris, Rubus fruticosus, Valeriana officinalis and Betula pubescens were seen in some of the old drains. Along the north of the site there is regenerating peat with a lot of Calluna vulgaris in the more western sections and Myrica gale in the eastern. There is a large patch of Phragmites australis in an area of old peat cutting to the north-east of the site. Typha latifolia, Cardamine pratensis, Angelica sylvestris, Hydrocotyle vulgaris and Lemna sp. are seen in the facebank drain in this area. Along the east-northeast of the main body of the site there is peat regeneration with some areas dominated by Calluna vulgaris and others by Juncus effusus and Molinia caerulea. Some of the old drains support mesotrophic species such as Typha latifolia. Further south along the east of the main body of the bog the River Breedoge forms the boundary and there is riverside vegetation present. The bog grades down to this and the vegetation is dominated by Eriophorum angustifolium. There are some isolated Salix trees with areas of regenerating peat further south where there is a wider area between river and bog (Kelly et al. 1995). The site-specific target for the attribute transitional areas is: **Restore adequate transitional** areas to support / protect the active raised bog and the services it provides. #### 2.3.5 Vegetation quality: central ecotope, active flush, soaks, bog woodland A diverse good quality microtopography on raised bogs consists of *Sphagnum* dominated pools, hollows, lawns and hummocks, which support the highest diversity of species including hummock indicators: *Sphagnum fuscum* and *S. austinii*; pool indicators: *S. cuspidatum*, *S. denticulatum*, and indicators of lack of burning events e.g. some lichen species (*Cladonia* spp.) (Cross 1990). The national target for the attribute vegetation quality has been set as "to maintain / restore sufficient high quality bog vegetation (i.e. central ecotope and / or flushes / soaks). At least 50% of ARB habitat should be central ecotope and / or flush / soaks." Bog woodland is also regarded as a desirable variant of ARB as it adds species and structural diversity to the habitat and therefore, where relevant, also contributes to the 50% target at site level. A summary description of the vegetation of Cloonshanville Bog is presented in Section 1.3.1 above. The vegetation and habitats of the bog have been described in more detail by Kelly *et al.* (1995) and Fernandez *et al.* (2005 & 2014b). The ARB habitat at Cloonshanville Bog includes central and sub-central ecotope, as well as active flush. There is also an area of birch woodland which corresponds with the Annex I priority habitat 'Bog woodland' (91EO) and is listed as a qualifying interest for the SAC. A small area of central ecotope is found in the north-west corner of Cloonshanville Bog. Subcentral ecotope of somewhat lower quality is more widespread across the bog. The most notable actively peat-forming feature of the bog is an extensive active flush that bisects the high bog (Fernandez *et al.* 2014a, b). The extent of the different ecotopes that correspond with ARB based on the most recent surveys is presented in Table 4 and on Map 2. It can be seen that the proportion of ARB that comprises central ecotope, active flush and bog woodland is currently 28.8%. Comparing this to results of surveys undertaken in 2004 indicates that the proportion of each of the component ecotopes remained relatively static. The target for this attribute is 22.0ha of high quality ARB (50% of ARB target area (44.0ha)). **Table 4** Extent of ecotopes classified as ARB in 2004 and 2012 (Fernandez et al. 2014a, b). | Ecotope | 2004 | | 2012 | | |---------------------|-------|----------------|-------|----------------| | | ha | % of total ARB | ha | % of total ARB | | Sub-central ecotope | 14.40 | 71.4 | 14.33 | 71.3 | | Central ecotope | 0.56 | 2.8 | 0.56 | 2.8 | | Active flush | 3.05 | 15.1 | 3.05 | 15.2 | | Bog woodland | 2.17 | 10.8 | 2.17 | 10.8 | | Total ARB | 20.18 | | 20.11 | | The site-specific target for the attribute vegetation quality is: **Restore 22.0ha of central ecotope/active flush/soaks/bog woodland as appropriate.** #### 2.3.6 Vegetation quality: microtopographical features The characteristic microtopographical features of raised bogs are described in Section 1.1.1 above. Hummock and hollow microtopography is well developed on Cloonshanville Bog (Kelly et al. 1995; Fernandez et al. 2014a, b). The site-specific target for the attribute microtopographical features is: **Restore adequate cover of high quality microtopographical features.** #### 2.3.7 Vegetation quality: bog moss (Sphagnum) species Bog mosses, which have unique properties, are the principal component of peat, and are largely responsible for the typical microtopographical features as described in Section 2.3.6 above. The vegetation of a typical raised bog that is still hydrologically intact is characterised by the dominance of several species of Sphagna and dwarf ericoid shrubs. The most abundant species are *Sphagnum capillifolium*, *S. austinii* and *S. papillosum* which form hummocks or low ridges. *Sphagnum fuscum* may also form hummocks (Cross 1990). On the flats *Sphagnum magellanicum*, *S. papillosum*, *S. tenellum*, and *S. subnitens* are the key species. *Sphagnum pulchrum* may also be dominant in flats on western raised bogs. In permanently waterlogged hollows *Sphagnum cuspidatum* and *S. denticulatum* (western bogs) occur. *Sphagnum fallax* is common where there is slight flushing (Cross 1990). The most commonly occurring *Sphagnum* moss species that occur on raised bogs in Ireland are presented in Table 5 along with a summary of their ecology and typical contribution to peat formation. Kelly et al. (1995) and Fernandez et al. (2014a, b) provide information on the occurrence of *Sphagnum* species throughout Cloonshanville Bog. **Table 5** *Sphagnum* species typically associated with raised bog ecosystems in Ireland. Ecology as described by Laine *et al.* (2009) with minor modifications. | Species | Ecology | Peat forming capacity | |--|--|-----------------------| | Sphagnum austinii | Sphagnum austinii Hummock species | | | Sphagnum capillifolium | Forms small hummocks and carpets | Moderate | | Sphagnum cuspidatum | Pool and hollow species | Low | | Sphagnum denticulatum | Pool and hollow species | Low | | Sphagnum fallax Occurs in lawns and carpets, shade tolerant. Indicative of some nutrient enrichment (soaks and active flushes) | | Low | | Sphagnum fuscum
| Forms dense low and wide, and occasionally high hummocks | High | | Sphagnum magellanicum | Lawn species forming carpets and low hummocks | Moderate | | Sphagnum palustre | Forms hummocks and dense carpets, often in shaded conditions. Indicative of nutrient enrichment (soaks and active flushes) | Low | | Sphagnum papillosum | Lawn , hollow, and low hummock species | Moderate | | Sphagnum pulchrum | Grows in lawns and hollows, more typical of western bogs | Moderate | | Sphagnum squarrosum | Forms carpets and small mounds. Indicative of nutrient enrichment (soaks and active flushes) | Low | | Sphagnum subnitens | Occurs as individual shoots or small cushions and lawns. Tolerant of minerotrophic conditions | Moderate | | Sphagnum tenellum | Occurs as single shoots or weak cushions, typically in disturbed patches of the bog surface | Low | The site-specific target for the attribute bog moss (*Sphagnum*) species is: **Restore adequate** cover of bog moss (*Sphagnum*) species to ensure peat-forming capacity. #### 2.3.8 Typical ARB species: flora Cloonshanville Bog supports the full complement of plant species typically associated with a true midland raised bog (see Section 1.1.2 above). The key typical species that are indicative of high quality raised bog include *Sphagnum fuscum* and *S. austinii* which are associated with hummocks and *S. cuspidatum* and *S. denticulatum* which are associated with pools and hollows. All of these species have been reported from Cloonshanville Bog (Fernandez *et al.* 2014a, b). The site-specific target for the attribute typical bog flora is: **Restore, where appropriate, typical active raised bog flora.** #### 2.3.9 Typical ARB species: fauna As mentioned in section 1.1.3, a list of typical fauna specific to ARB has not been developed and the table contains species that use the wider raised bog habitat. This may be refined as more information becomes available. Cloonshanville Bog is likely to support a wide range of fauna species that are typically associated with raised bog habitat (see Section 1.1.3 above). The site-specific target for the attribute typical bog fauna is: **Restore, where appropriate, typical active raised bog fauna.** #### 2.3.10 Elements of local distinctiveness A range of features may be associated with raised bogs which add to the scientific, historical, or conservation value of a bog. These can include geological, topographical, archaeological and hydrological features (e.g. soaks, lakes, flushes) and noteworthy species of flora and fauna (Cross 1990). Notable species of flora and fauna include those listed in the Habitats and Birds Directives, Red-listed species and other rare or localised species. For this attribute, features that are particularly associated with ARB are relevant. #### 2.3.10.1 Site features Bog woodland and the occurrence of the fen in the south-east of the SAC are the main features of local distinctiveness on Cloonshanville Bog. #### 2.3.10.2 Rare flora The notable bog moss species *Sphagnum pulchrum* has been recorded on Cloonshanville Bog and the scarce sedge *Carex curta* has been recorded from the SAC. #### 2.3.10.3 Rare fauna As mentioned above, there is limited current documented site-specific data relating to species that are particularly associated with ARB, including rare species. In conclusion, the site-specific target for the attribute elements of local distinctiveness is: Maintain features of local distinctiveness, subject to natural processes. #### 2.3.11 Negative physical indicators Raised bogs that have been damaged by marginal cutting and drainage, reclamation for agriculture, forestry activities, fire, surface drainage, or the lowering of regional water tables show a range of negative physical indicators (Cross 1990). Such negative physical features of ARB include: bare peat, algae dominated pools and hollows, marginal cracks, tear patterns, subsidence features such as dry peat and / or mineral mounds / ridges emerging or expanding, and burning evidence. Sub-marginal and marginal ecotopes are the dominant vegetation types across the high bog at Cloonshanville Bog. Negative physical indicators listed above are more frequently found within these ecotopes. Although some areas have a relatively well-developed raised bog flora, they are affected by water loss to varying degrees, and are usually devoid of permanent pools. Some tear pools were noted in these areas (Fernandez *et al.* 2014a, b). The site-specific target for the attribute negative physical indicators is: **Negative physical features absent or insignificant.** #### 2.3.12 Vegetation composition: native negative indicator species Indicators of disturbance on a raised bog include species indicative of drying out conditions such as abundant *Narthecium ossifragum* and *Trichophorum germanicum*; *Eriophorum vaginatum* forming tussocks; abundant *Sphagnum magellanicum* in pools previously dominated by species typical of very wet conditions (e.g. *Sphagnum cuspidatum*). Indicators of frequent burning events include abundant *Cladonia floerkeana* and high cover of *Carex panicea* (particularly in the true midlands raised bog type). At Cloonshanville Bog, Narthecium ossifragum has been recorded as the dominant plant of some parts of the non-active raised bog habitat (Fernandez et al. 2014a, b). In areas of former forestry on the high bog there is an abundance of native tree species (Betula pubescens, Salix aurita and Sorbus aucuparia) establishing following clearfelling. Chamerion angustifolium and Juncus effusus, neiter of which are typical raised bog species, are also abundant in clearfell areas as described by Fernandez et al. 2014b. The site-specific target for the attribute native negative indicator species is: **Native negative indicator species at insignificant levels.** #### 2.3.13 Vegetation composition: non-native invasive species Non-native invasive species that can commonly occur on raised bog habitats include: *Pinus contorta, Rhododendron ponticum,* and *Sarracenia purpurea* (Cross 1990). Fernandez et al. (2014a, b) noted that tree saplings are frequent on the clearfelled conifer plantations, and a large number of these are *Pinus contorta* in addition to native species mentioned above. Unless controlled, they are likely to mature and spread in the drier parts of the clearfells and perhaps drier parts of the undisturbed high bog. A *Rhododendron ponticum* seedling was noted in one clearfell area. Two *Pinus contorta* saplings were recorded in a sub-central ecotope area and others were noted near a clearfell area. These were not recorded in 2004 and may have invaded since then. The site-specific target for the attribute non-native invasive species: **Non-native invasive** species at insignificant levels and not more than 1% cover. #### 2.3.14 Air quality: nitrogen deposition Peatlands are highly sensitive to air pollution, particularly nitrogen deposition. Reactive nitrogen from fossil fuel combustion or intensive agriculture can contaminate rain and snow, causing soil acidification, nutrient enrichment, and a decline in species that are sensitive to these conditions. There is evidence that the combined impact of elevated nitrogen deposition and a warming climate could exceed the sum of the individual stressors and lead to a dramatic decline in the biodiversity of mosses, sensitive vascular plants, and microbes, potentially leading to catastrophic peat loss (PEATBOG project - http://www.sste.mmu.ac.uk). Air pollution can change both the species composition and the functioning of peatlands. The primary atmospheric pollutant from the Industrial Revolution to the mid 1970s was sulphur deposition, but levels have since greatly declined. Reactive nitrogen (N) deposition (primarily NO3- and NH4+), which can both acidify and eutrophy, became significantly elevated over a widespread area in the early to mid-20th century and is now the major pollutant in atmospheric deposition across most of Europe (Fowler *et al.* 2005). Nitrogen is commonly a limiting terrestrial nutrient and in un-impacted peatlands it is tightly cycled. With long-term elevated N deposition, vegetation composition typically shifts toward species adapted to higher nutrient levels, with an overall loss of diversity (Malmer & Wallén 2005). In peatlands, field experiments with N additions within the current European range have shown significant declines in bryophyte species-richness and productivity, and shifts in composition toward vascular plants (Bobbink *et al.* 1998; Bubier *et al.* 2007). Community shifts toward more nitrophilous bryophytes in N-enriched regions such as parts of the Netherlands are also well documented (Greven 1992). In the UK, both a general survey of peatlands across the country (Smart *et al.* 2003), and a targeted study of *Calluna* moorland (Caporn *et al.* 2007) showed significant inverse relationships between levels of nitrogen deposition and species richness, with bryophytes particularly impacted. Changes in the vegetation also impact below-ground communities and biogeochemical processes. Moderate increases in N deposition from a low level may increase *Sphagnum* and vascular plant productivity without an equal increase in decomposition rates, leading to enhanced carbon accumulation (Turunen *et al.* 2004). However, shifts in species composition from bryophytes to vascular plants may increase the production of easily-decomposable plant material, leading to higher rates of decomposition, and reduced carbon accumulation (Lamers *et al.* 2000; Bubier *et al.* 2007). The particular sensitivity of nutrient-poor ombrotrophic peatlands to nitrogen enrichment is reflected in the low critical load threshold of between 5 and 10kg N/ha/yr for these ecosystems (Bobbink & Hettelingh 2011), a level which is exceeded over a significant portion of their range. An Irish study during the late 1990s undertaken by Aherne & Farrell (2000) concluded that total N deposition shows a strong
east-west gradient, with lowest deposition in the west at 2kg N/ha/yr and highest in the east and south-east at 20kg N/ha/yr. Average N deposition over the Republic of Ireland was estimated to be approximately 12kg N/ha/yr. The study also concluded that the Critical Load Threshold for N was exceeded in at least 15% of ecosystems studied. The critical load applied to peatland ecosystems by Aherne & Farrell (2000) was 10kg N/ha/yr. This is in line with the recommendation by Bobbink & Hettelingh (2011) that the critical load should be set at the high end of the range in areas of high precipitation and at the low end of the range in areas of low precipitation assuming that Ireland represents a high precipitation area. It is recommended in the case of Cloonshanville Bog that the level of N deposition should not exceed the low end of the range i.e. 5kg N/ha/yr. This recommendation is based on a precautionary approach, as the evidential basis for setting a higher level is not particularly strong as alluded to by Payne (2014). Total N deposition in the vicinity of Cloonshanville Bog as reported by Henry & Aherne (2014) is 9.6kg N/ha/yr. The site-specific target for the attribute air quality is: Air quality surrounding bog close to natural reference conditions. The level of N deposition should not exceed 5kg N/ha/yr. #### 2.3.15 Water quality Ombrotrophic peat waters found on the surface of raised bogs are characterised by low pH values (pH < 4.5) (Moore & Bellamy 1974) and also have low values of electrical conductivity. This is due to the fact that the raised bog system derives its mineral supply from precipitation, which is usually acidic and low in nutrients. Raised bog vegetation exchanges cations with protons to further reduce the pH. Hydrochemistry varies in the areas surrounding a raised bog. Locally, conditions may be similar to the high bog due to a dominance of water originating from the bog. However, elsewhere in the marginal areas, there may be increased mineral and nutrient content of the water due to regional groundwater influences, run-off from surrounding mineral soils, and the release of nutrients through oxidation of peat resulting from reduced water levels. The only available hydrological data for Cloonshanville Bog is from the work carried out by Kelly *et al.* (1995). The hydrochemistry survey recorded elevated EC values in deep drains to the south-west and deep drains cutover drains along the western boundary of the high bog suggesting significant mineral rich groundwater influences. EC values were indicative of ombrotrophic conditions elsewhere. The site-specific target for the attribute water quality is: **Water quality on the high bog and** in transitional areas close to natural reference conditions. #### 3 References Aherne, J., & Farrell, E.P. (2000) Final Report: Determination and mapping of critical loads for sulphur and nitrogen and critical levels for ozone in Ireland. Environmental Protection Agency, Dublin, 212pp. Bobbink, R. & Hettelingh, J.P. (2011) Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23-25 June 2010. RIVM report 680359002, Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM). Bobbink, R., Hornung, M. & Roelofs, J.G.M. (1998) The effects of air—borne nitrogen pollutants on species diversity and semi—natural European vegetation. Journal of Ecology 86: 717–738. Bracken, F. & Smiddy, P. (2012) Lowland bogs, fens and reedswamps, pp. 73-89. In: Nairn, R., and O'Halloran, J. (eds.) Bird Habitats in Ireland. The Collins Press, Cork. Bracken, F., McMahon, B. & Whelan, J. (2008) Breeding bird populations of Irish Peatlands: capsule peatlands are very important habitats for birds despite low species diversity. Bird Study 55 (2): 169-178. Bubier, J., Moore, T. & Bledzki, L.A. (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology 13: 1168–1186. Caporn, S.J.M., Edmondson, J., Carroll, J.A., Pilkington, M. & Ray, N. (2007) Long-term impacts of enhanced and reduced nitrogen deposition on semi-natural vegetation. Report to Defra. Terrestrial Umbrella. Work Package 2: Impacts, Recovery and Processes. Task 4. Defra London. CEC (2007) Interpretation manual of European Union Habitats. Version EUR 27. European Commission, DG Environment, Brussels. Nature and Biodiversity. Colhoun, K. & Cummins, S. (2013) Birds of Conservation Concern in Ireland 2014–2019. Irish Birds 9: 523-544. Conaghan, J. & Heery, S. (2003) A survey of afforested and non-afforested areas within raised bog Special Areas of Conservation with a view to assessing their composition and conservation. Unpublished report, Coillte. Cross, J. (1990) The Raised Bogs of Ireland, their ecology, status and conservation. Report to the Minister of State at the Department of Finance. The Stationery Office, Dublin. Crushell, P.H., Schouten, M.G.C., Robroak, B.J.M. & van Duinan, G-J. (2008) The contribution of soak lakes to macroinvertebrate diversity of raised bogs in Ireland. In: Crushell, P.H. (2008). Soak Systems of an Irish Raised Bog: a multidisciplinary study of their origin, ecology, conservation and restoration. PhD thesis, Wageningen University, with a summary in Dutch and Irish. DAHG (2014) National Raised Bog SAC Management Plan. Draft for Consultation. Main report and appendices. Department of Arts, Heritage and the Gaeltacht. De Leeuw, J.P.M. (1986) Een onderzoek naar het voorkomen en de verspreiding van aquatische macro- en mirofauna in de Ierse hoogvenen. Deel 1: Macrofauna. Aquatische Oecologie, Katholieke Universiteit Nijmegen, Nijmegen, The Netherlands. Derwin, J. 2008. Restoring Raised Bog in Ireland, Project Reference: LIFE04 NAT/IE/000121. A Report on the Restoration of Project Site No. 8, Cloonshanville, Bog, Co. Roscommon. Unpublished report, Coillte. Derwin, J. & MacGowan, F. (2000) Raised bog restoration project: a continuation of the investigation into the conservation and restoration of selected raised bog sites in Ireland. Unpublished report, Dúchas the Heritage Service, Dublin. Fernandez Valverde, F., Fanning, M., McCorry, M. & Crowley, W. (2005) Raised bog monitoring project 2004-2005. Document 3: Site Reports and Maps Volume 1-5. Unpublished Report. National Parks and Wildlife Service, Dublin. Fernandez, F., MacGowan, F., Crowley, W., Farrell, M., Croal, Y., Fanning, M. & McKee M. (2006) Assessment of the impacts of turf cutting on designated raised bogs 2003-06. Unpublished report, National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin. Fernandez, F., Connolly, K., Crowley, W., Denyer J., Duff, K. & Smith, G. (2014a) Raised bog monitoring and assessment survey 2013. Irish Wildlife Manuals, No. 81. National Parks and Wildlife Service, Department of Arts, Heritage and Gaeltacht, Dublin, Ireland. Fernandez, F., Connolly, K., Crowley, W., Denyer J., Duff, K. & Smith, G. (2014b) Raised bog monitoring and assessment survey 2013 – Cloonshanville Bog, Co. Roscommon – site report. National Parks and Wildlife Service, Department of Arts, Heritage and Gaeltacht, Dublin, Ireland. Flynn, C. (2014) Nocturnal Lepidoptera of Midland Raised Bogs. A thesis submitted to the National University of Ireland, Maynooth for the Degree of Master of Science (MSc.). Fossitt, J. (2000) A Guide to Habitats in Ireland. The Heritage Council, Ireland. Fowler, D., Smith, R.I., Muller, J.B.A., Hayman, G. & Vincent, K.J. (2005) Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environmental Pollution, 137: 15-25. Gore, A.J.P. (ed.) (1983) Ecosystems of the world 4A. Mires: Swamp, bog, fen and moor. General studies. Elsevier Scientific Publishing Company, Amsterdam. Greven, H.C. (1992) Changes in the moss flora of the Netherlands. Biological Conservation 59: 133-137. Hannigan, E., and Kelly-Quinn, M. (2011) Chapter 2.6 - Aquatic macro-invertebrate diversity. pp. 140-157 In: Renou-Wilson, F. (ed.) BOGLAND: Sustainable Management of Peatlands in Ireland. Environmental Protection Agency, Wexford. Henry, J. and Aherne, J. (2014) Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands. Science of the Total Environment 470–471: 216–223. Kelly, L. & Schouten, M.G.C. (2002) Vegetation. In: Schouten, M.G.C. (ed.), Conservation and restoration of raised bogs: geological, hydrological and ecological Studies. Dúchas — The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosbeheer, the Netherlands; Geological Survey of Ireland, Dublin. pp. 110-169. Kelly, L., Doak, M. & Dromey, M. (1995) Raised Bog Restoration Project: An Investigation into the Conservation and Restoration of Selected Raised Bog Sites in Ireland. Part 1 Summary Reports. National Parks & Wildlife Service, Department of Environment, Heritage and Local Government, Dublin. Kelly, M.L. (1993) Hydrology, hydrochemistry and vegetation of two raised bogs in county Offaly. PhD thesis, Trinity College Dublin. Laine, J., Harju, P., Timonen, T., Laine, A., Tuittila, E.S, Minkkinen, K. & Vasander, H. (2009) The Intricate beauty of Sphagnum mosses - A Finnish guide to identification. University of Helsinki Department of Forest Ecology Publications, 39: 1–190. Lamers, L. P. M., Bobbink, R. & Roelofs, J. G. M. (2000) Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6: 583–586. Malmer, N. & Wallén, B. (2005) Nitrogen and phosphorus in mire plants: variation during 50 years in relation to supply rate and vegetation type. Oikos, 109: 539–554. Moore, P.D. & Bellamy, D.J. (1974) Peatlands. Elek Science. London. Nolan, M. (2013) Spiders (Araneae) of Irish raised bogs: Clara bog, Co. Offaly and Carrowbehy bog, Co. Roscommon. Bulletin of the Irish Biogeographical Society 37: 172-203. NPWS (2008) The Status of EU Protected
Habitats and Species in Ireland. National Parks and Wildlife Service, Ireland. NPWS (2013) The Status of EU Protected Habitats and Species in Ireland. Version 1.0. Unpublished Report, National Parks and Wildlife Services. Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland. O'Connell C. (ed.) (1987) The IPCC Guide to Irish Peatlands. Irish Peatland Conservation Council, Dublin. O'Connell, P. (2011) Action Plan for Raised Bog Birds in Ireland 2011-2020. BirdWatch Ireland, Kilcoole, Co Wicklow. O Connor, Á., Reynolds, J.D. & Kavanagh, B. (2001) Aquatic macroinvertebrate colonisation of artificial water bodies in cutaway oceanic raised bog in Ireland. In: Rochfort, L. and Daigle, J.Y. (eds.), Proceedings of the 11th International Peat Congress. pp. 742-750. Payne, R.J. (2014) The exposure of British peatlands to nitrogen deposition, 1900–2030. Mires and Peat 14: Art. 4. Renou-Wilson, F., Bolger, T., Bullock, C., Convery, F., Curry, J., Ward, S., Wilson, D. & Müller, C. (2011) BOGLAND: Sustainable Management of Peatlands in Ireland. STRIVE Report Series No.75. Prepared for the Environmental Protection Agency. pp. 181. Reynolds, J.D. (1984a) Invertebrate survey of Irish midlands raised bogs. Bulletin of the British Ecological Society 15: 81-82. Reynolds, J.D. (1984b) Invertebrate fauna of Irish raised bogs. Part II: Odonata, aquatic Hemiptera and Trichoptera. Bulletin of the Irish Biogeographical Society 8: 98-102. Reynolds, J.D. (1985) Invertebrates of Lough Roe, Co. Offaly; a rare and endangered bogland habitat. Bulletin of the Irish Biogeographical Society 9: 41-45. Schouten, M.G.C. (1984) Some aspects of the ecogeographical gradient in the Irish ombrotrophic bogs, paper presented to 7th Int. Peat Congress, Dublin, vol. 1, pp. 414-432, The International Peat Society, Helsinki. Schouten, M.G.C. (ed.) (2002) Conservation and Restoration of Raised Bogs – geological, hydrological and ecological studies. Dúchas – The Heritage Service of the Department of the Environment and Local Government, Ireland; Staatsbosheheer, The Netherlands; and The Geological Survey of Ireland. pp. 220. Smart, S.M., Robertson, J., Shield, E.J. & van de Poll, M.H. (2003) Locating eutrophication effects across British vegetation between 1990 and 1998. Global Change Biology 9: 1763-1774. Turunen, J., Roulet, N.T., Moore, T.R. & Richard, P.J.H. (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles. 18 (3): GB3002. Van Duinen G.A. (2013) Rehabilitation of aquatic invertebrate communities in raised bog landscapes. PhD thesis, Radboud University Nijmegen, the Netherlands. Wilson, H.J. (1990) Birds of raised bogs. pp. 29-36. In: Cross, J. (ed.) The Raised Bogs of Ireland, their ecology, status and conservation. Report to the Minister of State at the Department of Finance. The Stationery Office, Dublin. Wisdom, R. & Bolger, T. (2011) Chapter 2.4 - Terrestrial invertebrate biodiversity. pp. 103-121 In: Renou-Wilson, F. (ed.) BOGLAND: Sustainable Management of Peatlands in Ireland. Environmental Protection Agency, Wexford. Map 1: Extent of potential active raised bog on Cloonshanville Bog. Map 2: Distribution of raised bog ecotopes on Cloonshanville Bog. Legend Cloonshanville Bog SAC 000614 High Bog Boundary Active Raised Bogs Ecotopes Bog Woodland Central ecotope Soaks / active flush Sub-central ecotope SITE CODE: SAC 000614; version 3.01. Co. Roscommon The mapped boundaries are of an indicative and general nature only. Boundaries of designated areas are subject to rivision. Ordnance Survey of Ireland Licence No EN 0059216. © Ordnance Survey of Ireland Government of Ireland. Níl sna teorainneacha ar na léarscáileanna am nod garshuíomhach gínearáita. Féadfar athbhreithnithe a déanamh ar theorainneacha na gceantar comharthaithe. Suirbhéarachta Ordonáis na hÉireann Ceadúnas Uimh EN 0059216. ® Suirbhéarachta Ordonáis na hÉireann Riittas na hÉireann **CLOONSHANVILLE BOG SAC** CONSERVATION OBJECTIVES ACTIVE RAISED BOGS **ECOTOPES** An Notan Eulaion, (tidhreachta agus Gaeltachte Department of Arts, Heritoge and the Gaeltacht Map Version 1 Date: Jan 2016 Map 3: Digital elevation model and drainage patterns at Cloonshanville Bog.